Landslide monitoring with an integrated platform methodology, design and case study

simone.frigerio@irpi.cnr.it

Geology and Information Technology - Sezione della Società Geologica Italiana
GIT 2013 – Chiavenna (SO)
Rotolon Web-based platform

Rotolon torrent basin area (5 km²)
- Stretch: N-NW to S-SE
- Elevation range: 1950 m – 590 m
- Average basin slope: 55 %
- Main channel length: 4270 m
- Average main channel slope: 18%

BENCHMARKS

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BUSE SCURE-COL</td>
</tr>
<tr>
<td>2</td>
<td>ROTOLON COL</td>
</tr>
<tr>
<td>3</td>
<td>VAL FRIZZI VALLEY</td>
</tr>
<tr>
<td>4</td>
<td>AGNO DI LORA VALLEY</td>
</tr>
<tr>
<td>5</td>
<td>LENO DI VALLARSA VALLEY</td>
</tr>
<tr>
<td>6</td>
<td>RECOARO TERME</td>
</tr>
</tbody>
</table>

Meters

0 300 600
Col Rotolon - Recoaro Terme, Vicenza (Eastern Italian Alps)

- Debris flow associated to a Deep-Seated Gravitational Slope Deformation
- Significant re-activation on November 2010 (rainfall of 637 mm /12 days)
- Serious damages on the hamlet of Parlati and the town of Recoaro Terme
Col Rotolon - Recoaro Terme, Vicenza (Eastern Italian Alps)
Rotolon Web-based platform

Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and WiFi
- Radio link

1495 m a.s.l
Rotolon Web-based platform

Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and WiFi
- Radio link
Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- **6 wire extensometers**
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and WiFi
- Radio link
Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- **Automated Total Station (ATS) with 42 benchmarks**
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and Wi-Fi
- Radio link
Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and WiFi
- Radio link
Rotolon Web-based platform

Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and WiFi
- Radio link
Rotolon Web-based platform

Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- Master Station
- Modem ADSL and WiFi
- Radio link
Rotolon Web-based platform

Monitoring System and implementation of an EWS

- 2 rain gauges
- 1 video camera
- 6 wire extensometers
- Automated Total Station (ATS) with 42 benchmarks
- 3 pendulum section
- 1 trip wire
- Sirens system and thresholds
- **Master Station**
- Modem ADSL and WiFi
- Radio link
Why a Web-based platform for disaster management?

- Collecting data, connecting users and sharing information
- Reduce cost of maintenance and simplify the monitoring network
- Aggregate all monitoring system measures on a common DBMS
- Provide a cost-benefit solution for stakeholders actions

Features and rules of a Web-based platform:

- Multi-user access and maintenance (**admin rights**)
- End-user support on prevention and decision-making (**read-only rights**)
- Common platform for a user-friendly interface (report and graphic layout)
- Integration and time-based synchronization of all measurements
- Near-real time and easy-to-use facility
- Automatic communication (Skype, email, SMS) by threshold criteria
- Apple SDK integration
- Remote user-interface for technical maintenance
Sn = REFLECTING SENSORS
Bn = BENCHMARK SENSORS
En = EXTENSOMETERS
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

Monitoraggio Frana del Rotolon Recoaro Terme (Vicenza)

Commissariato delegato per il superamento dell'emergenza derivante da eventi alluvionali che hanno colpito il territorio della Regione Veneto dal 31 Ottobre al 2 Novembre 2010

CUM = cumulated rainfall
EST = extensometer
TEMP = temperature
RAD = solar radiance
PREC = hourly average rainfall

JavaScript, PHP
Dygraphs
PostGRES
Landslide monitoring with an integrated platform methodology, design and case study
Rotolon Web-based platform

Monitoring / reflecting sensors

- API selector
- Range selector

Landslide monitoring with an integrated platform methodology, design and case study
Landslide monitoring with an integrated platform methodology, design and case study

Monitoring / extensometer

- **Range selector**
- **Linear fit**

Dato misurato dall’estensimetro nr. 8

(Media oraria con aree di confidenza ottenute dallo scostamento massimo rispetto al valore medio, aggiornata all’ultima misura utile per l’estensimetro al 2012-11-19 08:25:00)

Velocità: 2.481 [mm/gg]

Clicca il pulsante “Mostra fit lineare” per generare una regressione lineare sui dati rappresentati. Se cambi lo zoom e schiacci nuovamente il pulsante, la regressione lineare verrà ricalcolata sui punti visibili.

Mostra fit lineare Elimina Fit
Monitoring / rain gauge

- Rainfall cumulated
- Alert level
- Range period
- Total and hourly

Landslide monitoring with an integrated platform methodology, design and case study
Monitoring / Reflecting sensors cumulated

• Selected benchmarks
Rotolon Web-based platform

Monitoring / Arrow Map

- Graphic thresholds
- Vector displacement

Table: Spostamento Totale 3D Accumulato

<table>
<thead>
<tr>
<th>Prisma</th>
<th>Spostamento totale planare [mm]</th>
<th>Spostamento totale verticale [mm]</th>
<th>Spostamento totale 3D [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>-0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>7.5</td>
<td>5.7</td>
<td>9.4</td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>9</td>
<td>13.9</td>
</tr>
<tr>
<td>4</td>
<td>20.5</td>
<td>-7</td>
<td>21.7</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>-3.2</td>
<td>24.0</td>
</tr>
<tr>
<td>7</td>
<td>17.3</td>
<td>-13.9</td>
<td>22.2</td>
</tr>
<tr>
<td>8</td>
<td>28.6</td>
<td>-4.1</td>
<td>29.1</td>
</tr>
<tr>
<td>9</td>
<td>21.3</td>
<td>-6.7</td>
<td>22.3</td>
</tr>
<tr>
<td>10</td>
<td>28.6</td>
<td>-8.8</td>
<td>30.3</td>
</tr>
<tr>
<td>11</td>
<td>34.2</td>
<td>12.3</td>
<td>36.4</td>
</tr>
</tbody>
</table>

Aggiornato a 2012-11-21 08:00:00 con l’ultima misura valida disponibile.
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

Monitoring / 3D displacement

- Selected benchmarks
- Cumulated 3D displacements
- Update 2012-12-07 08:00:00
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

Monitoring / Arrow Map

- Graphic thresholds
- Update 2012-12-07 08:00:00
- Vector displacement

<table>
<thead>
<tr>
<th>Prisma</th>
<th>Spostamento totale planare [mm]</th>
<th>Spostamento totale verticale [mm]</th>
<th>Spostamento totale 3D [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>-0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>7.5</td>
<td>5.7</td>
<td>9.4</td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>9</td>
<td>13.9</td>
</tr>
<tr>
<td>4</td>
<td>20.5</td>
<td>-7</td>
<td>21.7</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>-3.2</td>
<td>24.0</td>
</tr>
<tr>
<td>7</td>
<td>17.3</td>
<td>-13.9</td>
<td>22.2</td>
</tr>
<tr>
<td>8</td>
<td>28.8</td>
<td>-4.1</td>
<td>29.1</td>
</tr>
<tr>
<td>9</td>
<td>21.3</td>
<td>-6.7</td>
<td>22.3</td>
</tr>
<tr>
<td>10</td>
<td>28.6</td>
<td>-8.8</td>
<td>30.4</td>
</tr>
<tr>
<td>11</td>
<td>34.2</td>
<td>12.3</td>
<td>36.4</td>
</tr>
</tbody>
</table>
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

Monitoring / Cumulated rainfall + extensometers
Rotolon Web-based platform

Monitoring / Benchmarks sensors
Rotolon Web-based platform

Monitoring / Temperature + Extensometers

- Applied for all extensometers
Monitoring / Radiance + Extensometers

- Applied for extensometers 6-7-8
Monitoring / Rainfall + Extensometers

- Applied for extensometers 6-7-8
Monitoring / DTM 2m pre- & post-event (Oct 2010 – Nov 2010)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Raw</th>
<th>Thresholded DoD Estimate:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>± Error</td>
</tr>
<tr>
<td>AREAL:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Area of Erosion (m²)</td>
<td>114,900</td>
<td>91,732</td>
</tr>
<tr>
<td>Total Area of Deposition (m²)</td>
<td>180,276</td>
<td>156,656</td>
</tr>
<tr>
<td>VOLUMETRIC:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Volume of Erosion (m³)</td>
<td>404,048</td>
<td>400,890 ± 25,946</td>
</tr>
<tr>
<td>Total Volume of Deposition (m³)</td>
<td>387,705</td>
<td>384,551 ± 44,309</td>
</tr>
<tr>
<td>Total Volume of Difference (m³)</td>
<td>791,752</td>
<td>785,441 ± 70,255</td>
</tr>
<tr>
<td>Total Net Volume Difference (m³)</td>
<td>-16,343</td>
<td>-16,339 ± 51,347</td>
</tr>
<tr>
<td>PERCENTAGES (BY VOLUME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Erosion</td>
<td>51%</td>
<td>51%</td>
</tr>
<tr>
<td>Percent Deposition</td>
<td>49%</td>
<td>49%</td>
</tr>
<tr>
<td>Percent Imbalance (departure from</td>
<td>-1%</td>
<td>-1%</td>
</tr>
<tr>
<td>equilibrium)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Landslide monitoring with an integrated platform methodology, design and case study

Monitoring / Webcam

Monitoraggio Frana del Rotolon
Recoaro Terme (VI)

Commissariato delegato per il superamento dell’emergenza derivante da eventi alluvionali che hanno colpito il territorio della Regione Veneto dal 31 Ottobre al 2 Novembre 2010
Rotolon Web-based platform

Monitoring / 3D view
Challenge

• Parameters for Automated Total Station (ATS). Which thresholds?
• Parameters for extensometers? Which thresholds?
• Upgrade version for Apple SDK and Android SDK
• Integration of offline toolset (local web-clouds)
• Improving “human sensor” capability for data capture and calibration

....
On going….

- DTM 2m pre- and post-event (Oct 2010 – Nov 2010)

 Back-analysis of the 2010 event
 - MassMov
 - Dan3D

 Soil parameters
 - Runout scenarios
 - MassMov
 - Dan3D

HAZARD MAPS
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

On going....

- Decision Support System
- Modeling output
- Risk scenarios
- Structures
- Infrastructures
- Human resources
- Technical staff
- Personal data
- Documents
- Workflows
- Rules
- Email
- Alert System
- Modeling output
- Risk scenarios
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

- Sistema di Supporto alle Decisioni
 - Scenari di runout
 - Scenari di rischio
 - Email
 - Sistemi di allerta
 - Soglie
 - Dati personali
 - Documenti
 - Workflows
 - Leggi/regole interne

- Strutture
- Infrastrutture
- Risorse umane
- Materiale tecnico
Landslide monitoring with an integrated platform methodology, design and case study
Landslide monitoring with an integrated platform methodology, design and case study

Rotolon Web-based platform

3D Displacement 16/07/12 - 21/11/2012

3D Displacement 16/07/12 - 21/11/2012
Landslide monitoring with an integrated platform methodology, design and case study